ПAmIBIA UПIVERSITY
OF SCIEחCE AחD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE CODE: GNC502S	COURSE NAME: GENERAL CHEMISTRY 1B
SESSION: JANUARY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS DR. MARIUS MUTORWA
MODERATOR:	DR. JULIEN LUSILAO

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

PERMISSABLE MATERIALS
Non-programmable calculators

ATTACHMENTS

1. List of useful constants
2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 10 PAGES
(Including this front page, list of useful constants and Periodic Table)

- There are 20 multiple choice questions in this section. Each question carries 3 marks. Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. Consider the exothermic combustion of coal. Which of the following could increase the rate of reaction?
A. using smaller pieces of coal
B. increasing the concentration of oxygen
C. lowering the temperature
D. both (a) and (b) are correct
E. choices (a), (b) and (c) are all correct
2. Which of the following is/are expected to affect the rate of a chemical reaction?
A. Decreasing the reactant concentrations.
B. Increasing the available surface area of a reactant
C. Shaking a well mixed reaction solution.
D. A and B
E. C and A
3. For a certain overall third-order reaction with the general form $a \mathrm{~A} \rightarrow$ products, the initial rate of reaction is $0.50 \mathrm{M} \cdot \mathrm{s}^{-1}$ when the initial concentration of the reactant is 0.32 M . What is the rate constant for this reaction?
A. $0.02 \mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
B. $15 \mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
C. $0.50 \mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
D. $0.20 \mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
E. $47 \mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
4. When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the temperature rises from $25.18^{\circ} \mathrm{C}$ to $47.53^{\circ} \mathrm{C}$. What is the enthalpy change per gram of KOH dissolved in the water? Assume that the solution has a specific heat capacity of $4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
A. $-116 \mathrm{~J} / \mathrm{g}$
B. $-934 \mathrm{~J} / \mathrm{g}$
C. $-1.03 \times 10^{3} \mathrm{~J} / \mathrm{g}$
D. $-2.19 \times 10^{3} \mathrm{~J} / \mathrm{g}$
E. $-1.03 \times 10^{4} \mathrm{~J} / \mathrm{g}$
5. Which of the following statements is/are CORRECT?
A. If a reaction occurs at constant pressure, $q=\Delta H$.
B. The change in energy for a system is defined as the sum of the energies transferred as heat and work (i.e., $\Delta U=q+w$).
C. If a reaction occurs at constant volume, $q=w$
D. A and B
E. A and C
6. The heat of vaporization of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, is $30.7 \mathrm{~kJ} / \mathrm{mol}$ at its boiling point of $80.1^{\circ} \mathrm{C}$. How much energy in the form of heat is required to vaporize 102 g benzene at its boiling point?
A. 0.302 kJ
B. 23.6 kJ
C. 24.2 kJ
D. 40.1 kJ
E. $3.14 \times 10^{3} \mathrm{~kJ}$
7. Which of the following statements is/are CORRECT?
A. Product concentrations appear in the numerator of an equilibrium constant expression
B. A reaction favors the formation of products if $\mathrm{K} \gg 1$.
C. Stoichiometric coefficients are used as exponents in an equilibrium constant expression
D. A, B and C
E. A and B
F. C and A
8. What is the expression for K_{c} for the following equilibrium?

$$
\mathrm{CaSO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

A. $[\mathrm{CaO}]\left[\mathrm{SO}_{2}\right]$
B. $\left[\mathrm{SO}_{2}\right]$
C. $[\mathrm{CaO}]\left[\mathrm{SO}_{2}\right] /\left[\mathrm{CaSO}_{3}\right]$
D. $\left[\mathrm{CaSO}_{3}\right] /[\mathrm{CaO}]\left[\mathrm{SO}_{2}\right]$
E. [CaO]
9. Given the following chemical equilibrium:

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Calculate the value of K_{c}, given that $K_{\mathrm{p}}=6.5 \times 10^{11}$ at 298 K .
A. 1.5×10^{-12}
B. 3.8×10^{-11}
C. 1.1×10^{9}
D. 2.7×10^{10}
E. 1.6×10^{13}.
10. What is the reaction quotient, Q, for the equilibrium

$$
\mathrm{CuCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

When 0.3746 L of $4.356 \times 10^{-4} \mathrm{M} \mathrm{Cu}^{+}$is combined with 0.4326 L of $8.17 \times 10^{-4} \mathrm{M} \mathrm{Cl}^{-}$in the presence of an excess of $\mathrm{CuCl}(\mathrm{s})$?
A. 9.46×10^{-8}
B. 3.8×10^{-7}
C. 6.18×10^{-8}
D. 7.26×10^{-8}
E. 2.46×10^{-7}
11. Which of the following ground-state electron configurations corresponds to an atom having the largest ionization energy?
A. $[A r] 3 d^{10} 4 s^{2} 4 p^{3}$
B. $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
C. $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
D. $[K r] 4 d^{10} 5 s^{2} 5 p^{3}$
E. $[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 s^{2} 6 p^{3}$
12. The quantum numbers of an atom's highest-energy valence electrons are $n=5$ and $/=1$. The element to which this atom belongs could be a:
A. inner transition metal.
B. alkali metal.
C. s-block main-group element.
D. transition metal.
E. p-block main-group element.
13. What is the total number of electrons in p orbitals in a ground-state vanadium atom?
A. 6
B. 18
C. 12
D. 24
E. 30
14. Which Lewis dot formula for pyrophosphate, $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$, minimizes formal charge?
A.

B.

C.

D.

E.

15. The concept of resonance describes molecular structures that:
A. have several different geometric arrangements.
B. have delocalized bonding.
C. are formed from hybridized orbitals.
D. have different molecular formulas.
E. have electrons resonating.
16. Which of the following compounds would be expected to have the lowest melting point?
A. AlF_{3}
B. RbF
C. NaF
D. MgF_{2}
E. CaF_{2}
17. In which of the following species is there the greatest unequal sharing of the bonding electrons?
A. SO_{3}
B. $\mathrm{SO}_{3}{ }^{2-}$
C. $\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{H}_{2} \mathrm{O}$
E. $\mathrm{NH}_{4}{ }^{+}$
18. Rank the following species in order of decreasing radii: $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Se}^{2-}, \mathrm{Br}^{-}$.
A. $\mathrm{Br}^{-}>\mathrm{Se}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}$
B. $\mathrm{Se}^{2-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}$
C. $\mathrm{K}^{+}>\mathrm{Cl}^{-}>\mathrm{Se}^{2-}>\mathrm{Br}^{-}$
D. $\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{Se}^{2-}>\mathrm{K}^{+}$
E. $\mathrm{Cl}^{-}>\mathrm{Se}^{2-}>\mathrm{K}^{+}>\mathrm{Br}^{-}$
19. According to the valence-bond theory, the bonding in ketene, $\mathrm{H}_{2} \mathrm{CCO}$, is best described as:
A. five p bonds.
B. three s bonds and two p bonds.
C. four s bonds and two p bonds.
D. four s bonds and one p bond.
E. five s bonds.
20. What is the hybridization of I in $\mathrm{IF}_{4}{ }^{-}$?
A. $s p^{3} d$
B. $s p^{3} d^{2}$
C. $s p^{2}$
D. sp
E. sp^{3}

There are FOUR questions in this section. Answer ALL questions.
Show clearly, where necessary, how you arrive at the answer as the working will carry marks too.

QUESTION 1

Calculate the standard enthalpy of formation of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ from its elements:

$$
2 \mathrm{C} \text { (graphite) }+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

a) C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{r x n}^{0}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
b) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (I)
$\Delta H_{r x n}^{0}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
c) $2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta H_{r x n}^{0}=-2598.8 \mathrm{~kJ} / \mathrm{mol}$

QUESTION 2

The reaction of nitric oxide with hydrogen at $1280^{\circ} \mathrm{C}$ is

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The following data were collected at the above temperature:

Experiment	$[\mathrm{NO}](\mathrm{M})$	$\left[\mathrm{H}_{2}\right](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	5.0×10^{-3}	2.0×10^{-3}	1.3×10^{-5}
2	10.0×10^{-3}	2.0×10^{-3}	5.0×10^{-5}
3	10.0×10^{-3}	4.0×10^{-3}	10.0×10^{-5}

a) Determine the Rate law
b) Rate constant
c) Rate of reaction when $[\mathrm{NO}]=12.0 \times 10^{-3} \mathrm{M}$

QUESTION 3

The following compound is a synthetic intermediate in the production of lactacystin:

a) Identify the orbital hybridization of the atoms next to the two arrows.
b) Identify the molecular geometry of the atoms next to the two arrows.
c) Identify the bond angle around the atoms next to the two arrows.

QUESTION 4

Methyl nitrate, $\mathrm{CH}_{3} \mathrm{NO}_{3}$, is used a rocket propellant. One of the nitrogen-to-oxygen bond length is 136 pm and the other two are 126 pm .
a) Draw the most stable Lewis structure of the molecule.
b) What is the hybridization state of the carbon atom and the nitrogen atom based on the Valence bond Theory?
c) Which set of hybrid orbitals are used to form the C-N bond?
d) What is the bond angle between the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bonds?

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L}^{2}$ atm mol${ }^{-1} \cdot \mathrm{~K}^{-1}$ $1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} . \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$

1 atm $=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr

Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$

Speed of light, $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1																	18
$\begin{array}{\|c\|} \hline \mathbf{1} \\ \mathbf{H} \\ 1.00794 \end{array}$	2											13	14	15	16	17	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00260 \end{gathered}$
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	\mathbf{P}	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	$\mathbf{R u}$	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	$\mathbf{P t}$	Au	Hg	Tl	Pb	Bi	Po	At	$\mathbf{R n}$
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	$\mathbf{L r}$	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

Lanthanides:

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	$\mathbf{Y b}$
138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

Actinides:

89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

